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Abstract

Objectives The aim was to employ Gaussian processes to assess mathematically the
nature of a skin permeability dataset and to employ these methods, particularly feature
selection, to determine the key physicochemical descriptors which exert the most
significant influence on percutaneous absorption, and to compare such models with
established existing models.
Methods Gaussian processes, including automatic relevance detection (GPRARD)
methods, were employed to develop models of percutaneous absorption that identified
key physicochemical descriptors of percutaneous absorption. Using MatLab software, the
statistical performance of these models was compared with single linear networks (SLN)
and quantitative structure–permeability relationships (QSPRs). Feature selection methods
were used to examine in more detail the physicochemical parameters used in this study.
A range of statistical measures to determine model quality were used.
Key findings The inherently nonlinear nature of the skin data set was confirmed. The
Gaussian process regression (GPR) methods yielded predictive models that offered
statistically significant improvements over SLN and QSPR models with regard to
predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis
determined that the best GPR models were those that contained log P, melting point and the
number of hydrogen bond donor groups as significant descriptors. Further statistical
analysis also found that great synergy existed between certain parameters. It suggested that
a number of the descriptors employed were effectively interchangeable, thus questioning
the use of models where discrete variables are output, usually in the form of an equation.
Conclusions The use of a nonlinear GPR method produced models with significantly
improved predictivity, compared with SLN or QSPR models. Feature selection methods
were able to provide important mechanistic information. However, it was also shown that
significant synergy existed between certain parameters, and as such it was possible to
interchange certain descriptors (i.e. molecular weight and melting point) without incurring
a loss of model quality. Such synergy suggested that a model constructed from discrete
terms in an equation may not be the most appropriate way of representing mechanistic
understandings of skin absorption.
Keywords Gaussian process; machine learning methods; percutaneous absorption;
quantitative structure–permeability relationships

Introduction

The prediction of skin absorption is of interest to many fields, including topical and
transdermal drug delivery, cosmetics and risk assessment for dermal exposure. The
development of viable, quantitative models has been an area of substantial interest for almost
20 years, and offers considerable advantages in reducing or replacing time-consuming and
costly experiments. It is known that the physicochemical properties of a molecule exert a
substantial effect on its permeability, and as such most predictive methods have relied on
a qualitative or quantitative appraisal of such properties, usually as discrete entities within a
mathematical representation of permeation, to understand the mechanisms of absorption and
to allow prediction of the penetration of a range of exogenous chemicals. In particular, the
effects of lipophilicity (most commonly expressed as log P, the octanol–water partition
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coefficient), hydrogen bonding, molecular weight (or size)
and melting point were considered highly significant in their
influence, and therefore in predicting permeability.[1,2]

Subsequently, several researchers determined that molecular
size was more significant than previously suggested.[3,4]

It is interesting to consider the nature of descriptors returned
by different analyses of datasets. This is clearly highlighted
by Potts and Guy.[3,5] In those two studies, the authors
determined that the relationship between Kp and physicochem-
ical descriptors differed as the nature of the dataset (from
Flynn[6]) was, in the later study, qualitatively examined and
abbreviated to 37 compounds. This subset was shown to be
dependent on lipophilicity and hydrogen-bonding, whereas an
analysis of the whole dataset demonstrated that lipophilicity
and molecular weight were the key determinants in percuta-
neous absorption.[3]

Hydrogen bonding, despite being absent from the seminal
Potts and Guy[3] model, has been considered as a key influence
in percutaneous absorption for just over 30 years.[7] Partition
phenomena, and in particular the development of the
solvatochromic theory and developments in the understanding
of epidermal permeability indicated the importance of
hydrogen-bonding acceptor and donor properties in percuta-
neous absorption.[8–10]

Roberts et al.[11] showed that the introduction of even one
hydrogen-bonding group to a molecule could result in a
significant decrease in its permeability, whereas the addition
of further groups to the molecule resulted in further, smaller,
nonlinear decreases. They concluded that hydrogen bonding
was the key factor in diffusion across the stratum corneum,
whereas lipophilicity was more important for partitioning
and may be related to the pKa of the penetrant.

While it is difficult to directly compare the studies
discussed above with other approaches (due to, for example,
differences in dataset composition or statistical methods of
analysis), it may be argued that the use of methods that do not
properly consider the nature of the dataset used undermines
any resultant model. Moss et al.[12] compared the statistical
accuracy of Gaussian processes, single linear networks
(SLN) and quantitative structure–permeability relationships
(QSPRs) by a range of statistical methods, and found that the
nature of the dataset was inherently nonlinear and that skin
permeation (as represented by Kp) was best described, in
purely statistical terms, by Gaussian process approaches.

As this field expanded, a large number of studies
presented a diverse range of models based on an array of
different, often complementary, datasets, and an increasing
number of physicochemical properties, including hydrogen
bonding and molecular size, were presented.[5,9,11,13–15]

Various modifications have been made to these models,
some of which involve the use of nonlinear modelling. For
example, Wilschut et al.[16] examined five mathematical
models by nonlinear multiple regression. The octanol–water
partition coefficient and molecular weight were used as
independent parameters. They suggested that a modified
form of the Potts and Guy[3] equation best modelled skin
absorption. Finally, to understand the scope, limitations and
context of these models, and how they should be applied, it
must be emphasised that they are all based on infinite doses
being delivered from aqueous vehicles.

Therefore, while nonlinear modelling of skin absorption
is not new, it is certainly an area which has not been
extensively or systematically explored. The aim of this study
was to compare further the statistical accuracy and predictive
ability of linear and nonlinear methods of modelling, and
to explore combinations of molecular descriptors that
may influence, individually or synergistically, percutaneous
absorption.

Materials and Methods

Dataset

The dataset employed in this study was obtained from Moss
et al.[12] Briefly, it is a dataset that contains 142 different
chemicals and their associated physicochemical descriptors
and permeability values (Kp, as cm/h). It is an extension of
that published by Flynn[6] and utilised in the study by Potts
and Guy.[3] It is supplemented by the addition of data from
previous publications and from the Edetox database (avail-
able at www.ncl.ac.uk/edetox/index.html).[15–17] It includes
the data, obtained from the literature, for six physicochemical
descriptors of each compound, namely, molecular weight
(MW), melting point (MPt), solubility parameter (SP), the
octanol–water partition coefficient (log P, used as provided
in the sources listed above), hydrogen bonding acceptor
groups (HA) and donor groups (HD).[18]

Mathematical methods for model development

The mathematical methods employed herein have been
described in detail elsewhere.[12,19] The modelling in this
study was carried out by a combination of machine learning
methods and QSPRs. The QSPRs employed are those by
Potts and Guy[3], Cronin et al.[14], Moss and Cronin[20] and
Luo et al.[21]

Machine learning methods include SLN, which is a simple
linear regression (it is the same as a linear regression method
and uses iterated re-weighted least-squares training) and
Gaussian process regression (GPR), which is a regression that
calculates the relationship between variables via a nonlinear
processes. Further, Gaussian process regression with auto-
matic resonance detection (GPRARD) has been employed to
calculate the relative significance of the molecular descriptors
in GPR modelling.[12] Performance measures of GPR, SLN,
GPRARD and QSPRs were calculated via Matlab R2008a.
This program relies on tailored scripts (essentially, a series of
commands that allow Matlab to process the required
calculations) to conduct calculations for the specific tests
used in this study and in previous studies i.e. Moss et al.[12]

The scripts used were analysis by SLN/QSPR, GPR/
GPRARD, GPR (improvement over the naïve model (ION),
with statistical significance determined by a paired t-test), one
script for GPR (normalised mean squared error (NMSE),
paired t-test), GPR (correlation coefficient (CORR), r, paired
t-test), SLN (ION paired t-test), SLN (NMSE paired t-test) and
for SLN (CORR paired t-test). Matlab was used also to
perform statistical analysis of performance measures between
SLN and GPR. Statistical comparisons between QSPR and
machine learning methods (GPR and SLN) were performed
using SPSS (version 16).
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Quantitative structure–permeability
relationship analysis

Before the application of the modelling methods described
below to the dataset, the QSPR methods were applied to the
data to provide a comparison between machine learning
methods and previous approaches to this matter. The methods
used were those reported previously.[3,14,20] Further details on
the nature of these models may be found elsewhere.[14,20]

Machine learning methods

Single layer networks
Regression analysis was initially carried out on the dataset
using a SLN. This simple linear regression considers the output,
y, as the weighted sum of the components of an input vector, x,
which can be written as follows:

y ¼ yðx;wÞ ¼ ∑
d

i¼ 1

wixi þ w0 ð1Þ

where d is the dimensionality of the input space (i.e. the number
of features used to describe amolecule) andw = (w1; : : : ;wd;w0)
is the weight vector. The weights are set so that the sum squared
error function is minimised on a training set.

Gaussian process regression
Gaussian process modelling is a nonparametric method. It
does not produce an explicit functional representation of the
data, as QSPR modelling does in the form of an equation
where the permeability is usually related to statistically
significant physicochemical descriptors of a dataset. In GPR
modelling it is assumed that the underlying function that
produces the data, f(x), will remain unknown, but that the
data are produced from a (infinite) set of functions, with a
Gaussian distribution in the function space. This has been
described in detail elsewhere.[12,19] Briefly, a Gaussian
process is completely characterised by its mean and
covariance function. The mean function is normally
considered to be the ‘zero everywhere’ function. The
covariance function, k(xi, xj), is crucial to Gaussian process
modelling as it expresses the expected correlation between
the values of f(x) at the two points xi, xj. In other words, it
defines nearness or similarity between data points. Since the
model employed herein is a Gaussian process, this distribu-
tion is also Gaussian and is therefore fully defined by its
mean and variance. The mean at x* is given by:

E½y�� ¼ kT� ðK þ σ2nIÞ−1y ð2Þ
where k* denotes the vector of covariances between the test
point and Ntrn training data; K denotes the covariance matrix
of the training data; σ2n is the variance of an independent
identically distributed Gaussian noise, which means that
observations are noisy, K*

T is the transpose of K* ; and I is
the identity matrix; finally, y denotes the vector of training
targets. The variance, at x*, is given by:

var½y�� ¼ kðx�; x�Þ−kT� ðK þ σ2nIÞ−1k� ð3Þ
where k(x*,x*) denotes the variance of y*. In this study, the
mean has been used as the prediction and the variance as
error bars on the prediction.

Gaussian process regression with automatic
relevance determination (GPRARD)
To implement automatic relevance determination in GPR, the
characteristic length-scale matrix,M, is redefined as a diagonal
matrix containing the elements of vector L = [l−21 ,…,l−2D ], and
l1,…,lD on the diagonal are the characteristic length scales for
each input dimension, determining how relevant an input is to
the task.[22] If the length-scale has a very large value, it
suggests that the corresponding input could be removed from
the inference. These characteristic length-scales can be
optimised from the data by Bayesian inference.

Feature selection

The features, or molecular descriptors, most frequently used
in studies of modelling percutaneous absorption were
employed in this study. Parameters were used that were
readily accessible and calculable without the need for
expensive, specialist software.[12,20] The features utilised in
this study are listed above.

Analysis of the dataset

Data was visualised by scatter diagrams plotted with
Microsoft Excel 2007, to discern patterns between the
features. Such visualisation has been shown previously.[12]

The dataset was divided, for machine learning method
development, into a training set and a test in the ratio of 75%
(107 compounds) and 25% (35 compounds), respectively.[23]

The compounds were randomly allocated into the subsets
automatically by Matlab R2008a via primeSeed code, which
acts as a recorder to document the allocation of the
compounds in the subsets. In total, the experiment was
repeated 10 times, generating 10 different test sets. Each test
set contained a unique primeSeed code that recorded the
compounds allocated in the corresponding test set. The same
primeSeed codes were included in every script for the
machine learning method and QSPR to ensure identical
compounds were tested by each method.

Regression modelling was employed with each combina-
tion of descriptors as input vectors. In Gaussian process
modelling, the initial values of the logarithms of the
characteristic length scale, the signal variance and the noise
variance were chosen using cross validation from 10 user-
defined pre-sets. In addition, a fivefold cross-validation
procedure was used to select optimal parameters for each
test. In such cases, each training set was divided further into
training and validation sets five times.

To investigate which compound descriptors contributed
significantly to the prediction, GPRARD methods were
applied to the dataset. Experiments were again conducted on
10 randomly selected training and test sets. However, in this
case the hyperparameters were optimised by maximising the
marginal likelihood using the derivative rather than selecting
from pre-set hyperparameters using a cross validation
procedure.[24] In each case the logarithms of characteristic
length-scale, signal variance and noise variance were
initialised for each input dimension, as [0; 0; 0; 0; 0; 0;
log(SQRT(0.1))]. Rasmussen and Williams’[19] Gaussian
Processes Toolbox was applied to the dataset to carry out
Gaussian process modelling.
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Performance measurements of QSPR models and machine
learning methods were calculated via Matlab R2008a. The
parameters employed to ascertain statistical quality of each
model were percent improvement over the naïve model,
(ION, %), normalised mean squared error (NMSE) and the
correlation coefficient (CORR), as described above and
employed previously.[12]

Results

Consideration of the results of this study can be divided
broadly into four regions: the shape of the distribution
between physiochemical properties and skin permeability;
the comparison of the prediction accuracy between machine
learning methods modelling and QSPR models; the compar-
ison of the accuracy to quantify percutaneous absorption via
nonlinear and linear approaches; and the selection of features
that are significant in the mathematical quantification of skin
absorption. As a measure of performance, ION, NMSE and
CORR have been employed.

Distribution of the physicochemical
parameters and permeability coefficients

Visualisation of the data provided an insight into the
relationship between physiochemical properties and perme-
ability coefficients among 142 compounds employed in this
study. In common with previous work in this field, the
visualisation of the data shown previously[12] suggested that
the underlying relationship between the physicochemical
descriptors and permeability coefficients was inherently
nonlinear.[12,25] Moreover, other molecule descriptors includ-
ing melting point, molecular weight, solubility parameters,
HA and HD also showed nonlinearity with log Kp.

Further, the visualisation of the data described previously
indicated that the skin permeability coefficient was not solely
dependent on one molecular descriptor.[12,25] Compounds
with similar properties for one particular feature can
demonstrate enormous variations in log Kp. For example, if
compounds with one hydrogen bond donor group are
considered, log Kp is observed to vary from -1.2 to -5.0
approximately.

However, it should be noted that certain parameters, such
as hydrogen bond donor and acceptor groups, may be
considered as discrete rather than continuous variables, and
as such a linear relationship between these parameters and
descriptors that are continuous in nature (such as log P,
molecular weight or solubility parameter) should not
necessarily be expected, and may be of limited statistical
value.

Statistical evaluation of model quality

Figure 1 indicated that those latter models, derived from a
more comprehensive extension of Flynn’s[6] dataset (for
example, those that incorporate data from other studies)
resulted in improved predictions.[26–28] It should also be
noted that, as expected, the model proposed by Barratt[29]

performed relatively weakly due to the limitation in the
number of observations included in that study, a point made
previously in the literature.[24] This suggested the importance

of dataset validity, particularly with regard to size, the
consistency of experimental protocols, reproducibility, and
comprehensiveness in model developments.[20] This point
was highlighted by Moss and Cronin[20] who developed a
QSPR model, which did not include the steroid data used by
Scheuplein et al.,[30] which was collated into Flynn’s[6]

dataset, but instead used the data colleted by Johnson
et al.[25] The inclusion of the model by Barratt[29] suggested a
possible limitation in the use of this data, which the results in
Figure 1 would appear to substantiate.

As discussed above, log P, molecular weight and terms
pertaining to hydrogen bonding have been widely identified
as highly significant phenomena in developing a mechanistic
understanding of percutaneous absorption. Despite this, the
QSPR-type models employed in this study – and which
contain most, if not all of these parameters – fail to
accurately predict Kp; in most cases, they return predictions
that are, in terms of the statistical tests used to compare the
performance of models (i.e. measures of ION, NMSE and
CORR), significantly worse than the naïve model, which is
simply the average Kp value of the whole dataset. It can be
seen that, by using the same parameters, Gaussian process
and SLN models provide statistically better results than
QSPR models, particularly in terms of higher ION and lower
NMSE values, although difference is NMSE values are not
always as pronounced as those for ION. Nevertheless, the
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improvement is statistically valid (P < 0.05, Table 1). For the
combination of features discussed in the preceding section,
the Gaussian process demonstrated the best results, even
compared with SLN, in terms of both the model’s prediction
accuracy (ION) and stability (NMSE), as shown in Table 1.
However, as discussed previously, the nature of the dataset
and its compatibility with a particular mathematical approach
should be considered.[12] Nevertheless, Figure 2 shows a
clear improvement in the predictivity of the Gaussian process
model, compared with Potts and Guy.[3]

Feature selection

Due to the large number of statistical comparisons made
between each possible combination of molecular features,
Table 2 shows only a condensed comparison of the statistical
tests carried out comparing the combination of features in
Gaussian process models. Specifically, it includes only
models that demonstrated no significant difference compared
with the highest ION (%) ranked model (GPR: MPt, log P and
HD), in effect, the best performing combination of features as
defined by the results of the statistical comparison of models.
Table 3 shows the Gaussian process models that, on both ION
(%) and NMSE measurements, demonstrated no significant
difference compared with Gaussian process models with
better performance measures, as well as either no significant
difference or significant improvement compared with
Gaussian process models with worse performance measures.
The statistically ‘best’ Gaussian models all contain the
specific combination of log P and HD, coupled with either
melting point or molecular weight. It appears that melting
point and molecular weight are, in a purely modelling
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context, interchangeable in this process, and replacing one
with the other does not exert a detrimental effect on a
particular model. It should also be pointed out that the
reduced correlation coefficient observed for the Potts and
Guy[3] equation (in Table 1) may have been as a result of the
application of this model to our dataset, which differed from
that used originally to develop this model, and which may
be potentially of limited value. Table 4 shows a summary of
length scale analysis, calculated by Gaussian process
automatic resonance detection for each feature in the
Gaussian process models recorded in Table 2. Essentially,
a lower length scale value indicated a higher significance of
the role of a particular molecular descriptor in predictions of
permeability coefficients. From Table 4, it could be seen
that the difference in the length scale factor between the
molecular features in each model was relatively small. The
only exception was the solubility parameter, which demon-
strated a minimum of two significance figures difference
compared with other molecular descriptors. In essence, this
indicated that the solubility parameter was not a significant
feature in the quantification of percutaneous absorption. This
was further supported by addition of solubility parameters into
the combination of descriptors, which did not lead to a
significant improvement in model predictivity. For example,

the Gaussian process combinations (GPR: MW, MPt, SP, log
P, HD) and (MPt, log P, HA, HD) offered equally significant
predictions of log Kp. In some cases the inclusion of solubility
parameters could cause significant reductions in the pre-
dictivity of a model, for example, the Gaussian process
combination GPR: MW, MPt, log P, HA, HD was more
significant than GPR: MW, MPt, SP, log P, HA, HD.

The results of this particular analysis suggested that,
using the physicochemical descriptors of log P, the number
of hydrogen bonding donor groups, and either molecular
weight or melting point, resulted in a Gaussian process
model with optimal predictivity and that the addition of
further molecular descriptors did not improve the quality of
the model.

Comparison of nonlinear and linear
predictions of skin absorption

Lian et al.[31] suggested that the simplicity of linear equations
enhanced the ability of a model to provide accurate
predictions. This comment has been explored in this study,
where the difference in predictivity of the permeability
coefficient between Gaussian process and SLN modelling
has been examined. The results in Table 3 indicated that the
Gaussian process provided significantly better predictions of

Table 4 Statistical analysis of the best models obtained by Gaussian process, single layer network and quantitative structure–permeability

relationships methods

Model 1 Model 2 Model 1 Model 2 P value Significant

difference

ION (%) ± SD NMSE ± SD ION (%) ± SD NMSE ± SD ION (%) NMSE

GPR MPt.log P.HD SLN MPt.HA 37.59 ± 8.54 0.64 ± 0.13 11.23 ± 11.29 0.91 ± 0.13 0.00 0.00 Y

GPR MPt.log P.HD Luo et al.[21] 37.59 ± 8.54 0.64 ± 0.13 -53.25 ± 36.24 1.56 ± 0.35 0.00 0.00 Y

SLN MPt.HA Luo et al.[21] 11.23 ± 11.29 0.91 ± 0.13 -53.25 ± 36.24 1.56 ± 0.35 0.00 0.00 Y

GPR, Gaussian process regression; ION, improvement over the naïve model; MPt, melting point; log P, the octanol–water partition coefficient; HA,

hydrogen bonding acceptor groups; HD, hydrogen bonding donor groups; NMSE, normalised mean squared error; SLN, single linear networks.

Table 3 Statistical performance measures of the best-performing models, and significance of molecular descriptors employed in the Gaussian

process models

Combination

of features

Statistical performance measures Length scale

ION (%) ± SD INMSE ± SD CORR ± SD MW MPt SP log P HA HD Features significance ranking

MPt.log P.HD 37.59 ± 8.54 0.64 ± 0.13 0.63 ± 0.09 – 1.23 – 0.51 – 0.99 log P > HD > MPt

MW.MPt.log P.HD 37.40 ± 7.56 0.65 ± 0.15 0.62 ± 0.09 5.22 1.28 – 0.51 – 1.03 log P > HD > MPt > MW

MW.MPt.SP.log P.HD 37.35 ± 7.23 0.65 ± 0.14 0.62 ± 0.09 5.20 1.27 31.09 0.51 – 1.0 log P > HD > MPt > MW > SP

MPt.log P.Ha.HD 35.19 ± 10.81 0.67 ± 0.18 0.62 ± 0.10 – 1.14 – 0.85 2.51 1.11 log P > HD > MPt > HA

MW.SP.log P.HD 35.12 ± 7.08 0.67 ± 0.12 0.62 ± 0.08 0.77 – 83.70 0.64 – 0.62 HD > log P > MW > SP

MPt.SP.log P.HD 34.21 ± 11.46 0.68 ± 0.19 0.61 ± 0.10 – 1.22 24.47 0.51 – 0.98 log P > HD > MPt > SP

MW.log P.HD 0.77 – – 0.64 – 0.62 HD > log P > MW

MW.log P.Ha.HD 0.62 – – 0.78 0.64 0.41 HD > HA > log P > MW

MW.MPt.SP.log

P.Ha.HD

0.90 1.31 53.92 0.86 0.70 0.39 HD > HA > log P > MW > MPt > SP

MW.MPt.Ha 0.38 0.86 – – 0.43 – MW > HA > MPt

MW.MPt.log P.Ha.HD 0.90 1.32 – 0.87 0.70 0.40 HD > HA > log P > MW > MPt

MW.MPt.Ha.HD 0.26 1.91 – – 0.38 0.70 MW > HA > HD > MPt

CORR, correlation coefficient; ION, improvement over the naïve model; MW, molecular weight; MPt, melting point; NMSE, normalised mean squared

error; SP, solubility parameter; log P, the octanol–water partition coefficient; HA, hydrogen bonding acceptor groups; HD, hydrogen bonding donor groups.
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log Kp than SLN for the overall highest ION model, as well as
the best models within its categories based on specific
combinations of physicochemical descriptors. The only
exception was the model with two features, where the overall
best SLN model (where MPt and HA were returned as the
most significant parameters) demonstrated no significant
difference with the Gaussian process model (GPR: MW and
HD). The results of the statistical comparisons (paired t-tests)
of these models has been summarised in Table 4. These results
suggested that Gaussian process modelling was, in statistical
terms, the most appropriate model of those analysed to employ
in predicting percutaneous absorption, with the observed
differences being statistically significant. In terms of model
quality i.e. accuracy of prediting Kp, the statistical compar-
isons used in this study would suggest the following rank
order: Gaussian process > SLN > QSPR (all types).

Discussion

An important point in this study was that the composition of
the dataset (the inputs) clearly affected the nature of any
model derived (the output). This may seem obvious but it is
important to make such a point, given that the dataset used in
this study was different from those employed to develop the
established QSPR models. However, the specific composi-
tion of the dataset can clearly influence the nature of the
model. Moss et al.[12] discussed this, in terms of the breadth
of the Flynn[6] dataset, which underpins so much of the work
in this field. That dataset was composed predominantly of
molecules which, for example, had log P values less than 2.0.
Moss et al.[12] argued that this may in effect be providing
only a limited picture of percutaneous absorption, limiting
the applicability of the model, and this indeed has been
addressed by other researchers, where nonlinear modifica-
tions of the Potts and Guy[3] equation were proposed.[16] This
suggested that a simple linear relationship between Kp and
any number of molecular descriptors may not fully represent
percutaneous absorption, and may result in limited or
inaccurate predictivity for a particular model. In addition,
data visualisation also suggested a clear nonlinear relation-
ship between physicochemical properties of molecules,
suggesting no clear linear trend between any of these
descriptors.[32] Those QSPR models that could be loosely
described as being of the ‘Potts and Guy’ type suggested that
a linear response existed between, for example, Kp and log P.
As discussed recently, it should be noted that such a
relationship only exists within the specific range of the
models; ostensibly, this reflects the range of data employed
to construct the model.[17,33,34] It may be the case that the
models are therefore limited by the range of their dataset and
that this study, and those like it, yield models that are more
representative of percutaneous absorption across a wider
range of physicochemical properties.

A range of nonlinear methods have been employed to
improve predictions of skin absorption. Artificial neural
networks (ANN) have been employed, showing high
predictive power.[35] However, it is a limited method in
that ANNs have a tendency to over-fit where large numbers
of physicochemical descriptors exist, compared with the data
points used. Such models are often weighted and are

susceptible to over-training.[33] This results in idiosyncratic
results, particularly as the output will tend to fit the noise in
such cases, providing poor predictivity for new com-
pounds.[36] Gaussian process methods do not alleviate all
these issues, but minimise them, providing better predictions
of percutaneous absorption than existing models.[12,19]

Therefore, this study employed Gaussian process methods
of analysis and, in particular, Gaussian process automatic
resonance detection. This measures the covariance and length
scale of each feature in the combination. The inverse of the
length scale determines the relevance between input and
output, thereby a low length scale value implies that the input
and covariance are highly dependent on each other. In other
words, this can reduce the limitation of Gaussian process
caused by a ‘black box’ approach and provide an insight into
the significance of specific molecular descriptors.[12] SLNs
were also evaluated as they allow interpretation of the
predictivity limitations in linear model at different ranges of
features, providing a comparison between linear QSPR and
machine learning methods.[37]

Data visualisation also indicated that Kp was not solely
dependent on one molecular descriptor.[12] Compounds with
similar properties for one particular descriptor could demon-
strate enormous variations in log Kp. For example, for
compounds with one hydrogen bond donor group, log Kp

was observed to vary from -1.2 to -5.0 approximately. Such a
visualisation of data clearly demonstrated the synergic effects
between the physicochemical features investigated in this
study and would indicate either that more than one
physicochemical descriptor was required to successfully
model percutaneous absorption, or that such parameters
were not independent of each other (such as the relationship
between log P and molecular weight) and that the use of
particular parameters may be limited in terms of gaining
specific understandings of mechanisms of absorption. Further,
effects such as ionisation (and therefore solubility and
speciation) have not been considered by any of these studies.

Nevertheless, Figure 2 demonstrates a clear improve-
ment in predictivity by the Gaussian process model
compared with the Potts and Guy[3] model. Figure 2
contains data points obtained from a subset of the overall
dataset, due to the methods employed for the generation of
tests sets, as described in the previous section. The test set
shown in Figure 2 was that which resulted in the Potts and
Guy[3] model achieving the best performance among the
10 test sets generated by this analysis. This was compared
with experimental log Kp and predicted Kp from the model
with the highest ION (%) value (GPR: MPt, log P and HD).
It is a good example of how Gaussian process methods
provide a better fit to experimental log Kp in contrast to
Potts and Guy.[3] Even with such a subset, where
performance is, in effect, at an optimum, the statistical
performance of the Potts and Guy[3] model results in a
majority of the predicted log Kp values being distinctly
different from the experimental log Kp values, as indicated
by comparatively poor ION and NMSE values. Even in this
case the Gaussian process model was, in statistical terms,
more accurate. Further, and rather qualitatively, it may be
suggested that the scatter of the output shown in Figure 2
from the Gaussian process was substantially less linear than
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that from the QSPR model, and that the latter appeared to
be more representative of the scatter associated with the
experimental data.

In the best Gaussian process models (shown in Table 5),
every combination of features contained log P and HD
together with either melting point or molecular weight. This
suggested that molecular weight, melting point, log P and
HD were important features in permeability coefficient
predictions. It also suggested at the inter-relationship and
lack of independence of certain descriptors. Interestingly, in
this type of combination, melting point and molecular weight
were inter-exchangeable to give predictions with no
significant differences; for example, the Gaussian process
combinations [MPt, log P, HD] and [MW, log P, HD]
produce models of a similar statistical quality. Furthermore,
addition of molecular weight or melting point to these
models did not significantly influence log Kp predictions,
such as the Gaussian process combinations [MW, log P, HD],
[MPt, log P, HD] and [MW, MPt, log P, HD], which all
demonstrated no significant difference in performance
measures. This inter-exchangeability implied that a high
level of correlation existed between melting point and
molecular weight.[38] On the other hand, it should be
considered that, while molecular weight and melting point
were interchangeable for modelling purposes, this did not
necessarily indicate a degree of correlation between the two
parameters. This was reflected in the findings of a previous
Gaussian process study.[12]

HD only appeared to exert its importance in skin
permeability when coupled with log P. When log P was
absent, inclusion of HD in the model could significantly
decrease a model’s predictive power. However, when a
model was constructed containing log P, HD constantly
demonstrated a lower length scale value than HA. In this
case, addition of HA to the model did not result in
improvements in predictivity. This meant that the Gaussian

process models [GPR: MW, log P, HA, HD] and [GPR: MW,
logP, HA] had a similar statistical performance, whereas
removal of HD could significantly reduce performance
measures. For example, [GPR: MPt, log P, HD, HA] was
significantly better than [GPR: MPt, log P, HA] (P = 0.0022).

It was not just the removal of HD that impacted on the
statistical quality of models. For example, in the absence of
log P, the Gaussian process model [GPR: MW, MPt and HA]
demonstrated no significant difference in ION (%) value
compared with [GPR: MPt, log P, HD], the latter being the
model with the best overall performance measures. This
might have been due to the molecular weight bias of the
dataset employed in this study, which was predominantly
based on Flynn.[6,39] This highlighted that the effects of
ionisation might not have been considered in the develop-
ment of these models, or in previous models that employed
such literature data. It should be noted, however, that [GPR:
MW, MPt and HA] performed poorly in NMSE measure-
ments, indicating that this model was not, in a statistical
sense, a stable and reliable combination.

The results presented in Table 5 indicated that the
Gaussian process provided significantly better predictions
of log Kp than SLNs for the overall highest ION model, as
well as the best models within its categories based on specific
combinations of physicochemical descriptors. The only
exception was the model with two descriptors, where the
overall best SLN model (which returned MPt and HA as
being the most significant parameters) demonstrated no
significant difference with the Gaussian process model ([MW
and HD]).

The ‘black box’ approach, as presented previously, did
not allow the elucidation of mechanistic information, only
predictions of Kp for chemicals of interest.[12] This study, and
the use of feature selection methods, allowed all combina-
tions of molecular descriptors to be assessed for their ability
to improve statistically the quality of models generated.

Table 5 Statistical analysis (paired t-test) between the Gaussian process and single layer network models with the highest ION (%) in each number

of molecular descriptor categories

Highest

ION (%)

model

GPR

models

SLN

models

GPR ION

(%) ± SD

GPR

NMSE ± SD

SLN ION

(%) ± SD

SLN NMSE

± SD

P value

(ION %)

P value

(NMSE)

Significant

difference

(ION %)

Significant

difference

(NMSE)

Overall MPt.log

P.HD

MPt.HA 37.59 ± 8.54 0.64 ± 0.13 11.23 ± 11.29 0.91 ± 0.13 0.00 0.00 Y Y

2 features MW.HD MPt.HA 25.54 ± 12.90 0.77 ± 0.19 11.23 ± 11.29 0.91 ± 0.13 0.34 0.046 N Y

3 features MPt.log

P.HD

MPt.SP.

HA

37.59 ± 8.54 0.64 ± 0.13 10.77 ± 11.52 0.91 ± 0.14 0.00 0.00 Y Y

4 features MW.MPt.

log P.HD

MW.MPt.

SP.HA

37.40 ± 7.56 0.65 ± 0.15 9.36 ± 11.20 0.93 ± 0.18 0.00 0.00 Y Y

5 features MW.MPt.

SP.log

P.HD

MW.MPt.

SP.HA.HD

37.35 ± 7.23 0.65 ± 0.14 6.90 ± 13.33 0.96 ± 0.19 0.00 0.00 Y Y

6 features MW.MPt.

SP.log

P.HA.HD

MW.MPt.

SP.log P.

HA.HD

31.61 ± 10.70 0.71 ± 0.15 3.47 ± 14.24 0.99 ± 0.20 0.00 0.00 Y Y

CORR, correlation coefficient; GPR, Gaussian process regression; ION, improvement over the naïve model; NMSE, normalised mean squared error;

SLN, single linear networks. MW, molecular weight; MPt, melting point; SP, solubility parameter; log P, the octanol–water partition coefficient;

HA, hydrogen bonding acceptor groups; HD, hydrogen bonding donor groups.
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While this has resulted in a clear understanding of the models
that will improve prediction of Kp, it has demonstrated that
the combination of descriptors responsible for such improve-
ments is not always clear or consistent. This essentially
demonstrated the interconnection of the parameters used. For
example, an increase in lipophilicity can be achieved by
increasing molecular weight and such increases were not
necessarily linear.[40] The lipophilicity of a compound is
determined by its chemical structures and the position of the
aromatic ring; carbons, benzene rings and amide groups
can increase log P.[41,42] As molecular weight increases, the
number of carbon skeletons increases and therefore the
lipophilic surface of a compound increases. The increase in
number of hydrophobic alkane groups is considered as the
major contribution to the increase in lipophilicity and hence,
to an extent, permeability.[10] Water prefers to interact with
hydrogen bonding groups or ionic molecules rather than
nonpolar compounds.[38] Ghasemi and Saaidpour[43] high-
lighted that, as molecular weight increased, the increase in
lipophilicity resulted in the compound becoming nonpolar,
increasing solubility in the stratum corneum and reducing
solubility in the aqueous environment (dermis). This was
consistent with the findings of previous studies in this
field.[12,17]

As the number of hydrogen bonding groups on a molecule
increases, the ability of the molecule to form hydrogen bonds
with water increases and therefore lipophilicity decreases.
Therefore, a hydrogen bond can, indirectly, be an indication
of log P. Fitzpatrick et al.[44] suggested that a hydrogen bond-
related descriptor should be included in a model when there
is the absence of a parameter directly relating to lipophilicity.

Compared with log P and molecular weight, the exact
mechanistic understanding of how hydrogen bonding influ-
ences percutaneous absorption is less clear. Several authors
have demonstrated that hydrogen bonding was highly related
to skin permeability.[9,13,45] Poulin and Krishnan[46] and Potts
and Guy[5] suggested that hydrogen bonding could signifi-
cantly influence percutaneous absorption by reducing the
ability of a compound to penetrate the skin, and that
hydrogen bond acceptor groups play a more significant role
than donor groups, a suggestion supported by Pugh et al.[13]

However, the findings of this study suggested a different
conclusion, where generally acidic hydrogen bond donor
groups have been shown to be more significant than
generally basic hydrogen bond acceptor groups. These
findings were in agreement with those presented by El
Tayar et al.[47] and Geinoz et al.[41] This discrepancy may
have been due to the role ionisation played in both the overall
process of percutaneous absorption and in the nature of the
descriptors. Poulin and Krishnan[46] suggested that the effects
of lowering Kp by hydrogen bonding were particularly strong
when the molecule had two or more hydrogen bonding donor
or acceptor groups in the compounds. According to Roberts
et al.[10] and Ghafourian and Fooladi,[32] inclusion of one
hydrogen bond group (either a donor or acceptor) to the
hydrocarbon skeleton would cause a substantial reduction in
Kp. Addition of subsequent groups also reduced Kp, but did
so in a nonlinear additive manner.

Hadgraft[48] highlighted that interactions between com-
pound and the polar head groups of skin lipids in the

intercellular channels play a significant role in percutaneous
absorption. Molecules containing hydrogen bond groups can
associate with the immobilised polar head groups of the
lipids. As a result, their passage across the skin may be
hindered, decreasing the diffusion coefficient and reducing
their ability to diffuse across stratum corneum.[49] This may
result in hydrogen bonding and ionic forces modification,
which implies a change of head group domains. This
complicates skin penetration as such an alteration may
influence permeation of other exogenous chemicals in, for
example, the same formulation. The number of hydrogen
bond groups may vary during the partitioning process. For
example, once a donor group donates a hydrogen bond, it has
the potential to become a hydrogen bond acceptor, while
groups that have not been ionised remained as hydrogen
bond donor groups. Further, intermolecular hydrogen
bonding has a substantial influence on aqueous solubility
since the O-H and N-H bonds are strongly polarised and may
readily facilitate donation.[50]

Most of the permeants in the data set are either weak acids
or weak bases. Hence, ionisation can occur at different pH
values.[48] According to Aberg et al.,[51] the skin surface is
acidic with pH ranging from 4 to 6. However, the pH of
extracellular fluid in the body is approximately 7.4, and
implies a large pH gradient between the stratum corneum and
underlying tissues. Removal or addition of a hydrogen bond
can lead to a compound becoming ionised. The extracellular
stratum corneum lipid contains free fatty acids that can
undergo dissociation, resulting in a negative surface charge
caused by the presence of ionised carboxyl groups.[51] As the
skin is a negatively-charged membrane, this electrostatic
interaction becomes a hindrance of ionised penetrants.[52]

Thus, ionic compounds, particularly cations, have a lower
ability to penetrate the skin compared with neutral
compounds.

The disparity between the findings of Potts and Guy[5] and
this study also relates to ionisation. During the process of
experimentally measuring Kp, the solute was placed in a
solvent where it was possible for the solute to interact with
the solvent and, depending on the pKa of the solute and the
pH of the solvent, for the solute to ionise. It should be
considered that log P values were also measured with
ionisable compounds under conditions that may have
favoured more ionic species, thus influencing the log P
value obtained. Thus, experimental measurements of Kp

might not appropriately reflect the effects of hydrogen
bonding but may instead reflect the effects of ionisation.

Conclusions

In comparing different approaches for developing predictive
models of percutaneous absorption, this study agreed with
previous work suggesting the inherently nonlinear nature of
the skin data set used.[12] Further, Gaussian process machine
learning methods produced statistically more robust models
than other approaches (SLN or QSPR-based models). The
use of feature selection enabled the development of a
mechanistic understanding of percutaneous absorption.
While this approach resulted in specific models that were
statistically superior, it also indicated clearly the
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interdependence of the physicochemical descriptors
employed in this, and in many other, studies. This suggested
that the approach of quantifying models of skin absorption by
means of a simple equation may have limited mechanistic
value. While hydrogen bonding appeared to play an
important role in percutaneous absorption, the issue of
ionisation may have limited the validity and accuracy of
models.
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